Download Meme Generator on Google Play

katiecorn8,000

Yo dawg. Quantum mechanics (QM; also known as quantum physics, quantum theory, the wave mechanical model and matrix mechanics), part of quantum field theory, is a fundamental theory in physics. It describes physical properties of nature on an atomic scale.[2] Classical physics, the description of physics that existed before the theory of relativity and quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, while quantum mechanics explains the aspects of nature at small (atomic and subatomic) scales, for which classical mechanics is insufficient. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.[3] Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave-particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).[note 1]
Yo dawg. Quantum mechanics (QM; also known as quantum physics, quantum theory, the wave mechanical model and matrix mechanics), part of quantum field theory, is a fundamental theory in physics. It describes physical properties of nature on an atomic scale.[2] Classical physics, the description of physics that existed before the theory of relativity and quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, while quantum mechanics explains the aspects of nature at small (atomic and subatomic) scales, for which classical mechanics is insufficient. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.[3] Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave-particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).[note 1]

This item will be deleted. Are you sure?